The correct option is A x=2,y=3 or x=−2,y=13.
Rewriting the given expression, one get
(x4−3x2)+(2x−y)i=4(2y−5)i
Equation real and imaginary parts one get
x4−3x2=4 and 2x−y=2y−5
⇒(x2+1)(x−2)(x+2)=0 and 2x=(3y−5)
∴x=±i or x=2 or x=−2
But x being real, so either x=2 or x=−2 consequently y=3 or y=13