The correct option is C 12
Let f(n)=1n2+n+1+2n2+n+2+⋯+nn2+n+n
Consider g(n)=1n2+n+n+2n2+n+n+⋯+nn2+n+n
=1+2+3+⋯+nn2+2n=n(n+1)2(n2+2n)
where g(n)<f(n) …(1)
Similarly, h(n)=1n2+n+1+2n2+n+1+⋯+nn2+n+1
=n(n+1)2(n2+n+1)
where f(n)<h(n) …(2)
From (1) and (2),
g(n)<f(n)<h(n)
But limn→∞g(n)=limn→∞h(n)=12 (∵We know, as n→∞,1n→0)
Hence, using Sandwich theorem, limn→∞f(n)=12