The correct option is B 8√2(log3)2
limx→027x−9x−3x+1√2−√1+cosx
=limx→0(27x−9x−3x+1)(√2+√1+cosx)1−cosx
=limx→0[9x(3x−1)−1(3x−1)](√2+√1+cosx)1−cosx
=limx→0(9x−1)(3x−1)(√2+√1+cosx)2sin2(x2)
=limx→0(9x−1)x(3x−1)x(√2+√1+cosx)2sin2(x2)4(x2)2
=log9log3(2√2)1/2=8√2(log3)2