The correct option is A −2
limx→0log(1+xsinx)cosx−1
It is of the form 00, so applying L-Hospital's rule
=limx→011+xsinxsinx+xcosx−sinx
=1.limx→0sinx+xcosx−sinx
=limx→0sinxx+cosx−sinxx
=1+1−1=−2
Alternative Method:
limx→0log(1+xsinx)cosx−1
=limx→0log(1+xsinx)xsinxlimx→0xsinxcosx−1
=limx→0sinxxlimx→0x2cosx−1
=limx→0x22sin2x2
=limx→04(x24)−2sin2x2
=−2