The correct option is B 215
An=13+23+33+...+n3=n2(n+1)24
Bn=14+24+34+...+n4=n(n+1)(2n+1)6.3.n2+3n−15
Cn=15+25+35+...+n5=n2(n+1)24.2.n2+2n−13
limn→∞2n2An−nBn−Cnn6
=limn→∞1n6{2n4.(n+1)24−n2(n+1)(2n+1)(3n2+3n−1)30−n2(n+1)2(2n2+2n−1)12}
=limn→∞12(n+1n)2−130(n+1n)(2n+1n)(3n2+3n−1)n2−112(n+1n)2(2n2+2n−1)n2
=12−630−212=215
Hence, option 'D' is correct.