The correct option is B 23
limn→∞23−1323+13.33−1333+13....n3−1n3+1=limn→∞(2−1)(22+2.1+1)(2+1)(22−2.1+1).(3−1)(32+3.1+1)(3+1)(32−3.1+1)....(n−1)(n2+n.1+1)(n+1)(n2−n.1+1)=limn→∞1.73.3.2.134.7.3.215.13....(n−1)(n2+n+1)(n+1)(n2−n+1)=limn→∞23.n2+n+1n(n+1)=23.11=23