Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4465
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
243256
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
∞
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A256243 limn→∞n(12+22+32+..⋅.⋅.⋅⋅+n2)5(13+23+33++n3)4 limn→∞n(∑nk=1k2)5(∑nk=1k3)4 use summation formula limn→∞n(n(n+1)(2n+1)6)5(n(n+1)2)8 limn→∞n16((1+1n)(2+1n)6)5n16(1+1n2)8 limn→∞(13)5(12)8=2835