wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limn(112233.....(n1)n1nnn1+2+3+....+n)1n2 equals.

Open in App
Solution

Given: limn(11.22.33......(n1)n1.nn)1n2n1+2+3+........n
To find: Value of the limit
Sol: l=limn(11n1.22n2.33n3.......(n1)n1nn1.nnnn)1n2
l=limn((1n)1.(2n)2.(3n)3........(n1n)n1.(nn)n)1n2
Taking log on both sides
ln(l)=limnln{(1n)1.(2n)2.........(nn)n}1n2

ln(l)=1n2.limn[ln(1n)+2ln(2n).........nln(nn)]

=1n2.limnnr=1r.ln(rn)

=1n.limnnr=1rn.ln(rn)

ln(l)=10nln(n)dn
Integrating by parts, we get
ln(l)=ln(n).[n22]10[n24]10

=014=14

l=e14
Hence correct answer is e14

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dimensional Analysis
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon