Given: limn→∞(11.22.33......(n−1)n−1.nn)1n2n1+2+3+........n
To find: Value of the limit
Sol: l=limn→∞(11n1.22n2.33n3.......(n−1)n−1nn−1.nnnn)1n2
⟹l=limn→∞((1n)1.(2n)2.(3n)3........(n−1n)n−1.(nn)n)1n2
Taking log on both sides
ln(l)=limn→∞ln{(1n)1.(2n)2.........(nn)n}1n2
⟹ln(l)=1n2.limn→∞[ln(1n)+2ln(2n).........nln(nn)]
=1n2.limn→∞∑nr=1r.ln(rn)
=1n.limn→∞∑nr=1rn.ln(rn)
⟹ln(l)=∫10nln(n)dn
Integrating by parts, we get
ln(l)=ln(n).[n22]10−[n24]10
=0−14=−14
⟹l=e−14
Hence correct answer is e−14