The correct option is
B 18e4Let the limit be equal to value A and apply log on both sides.
logA=limn→∞log((n+1)(n+2).....3nn2n)1n
=limn→∞1nlog((n+1)(n+2).....3nn2n)
=limn→∞1nr=2n∑r=0log(n+rn)
Taking 1n as dx and rn as x
Let a,b are the limits of the integration,
⇒ when r=0, a=limn→∞1n=0 ; and r=2n, b=limn→∞2nn=2
logA=limn→∞1nr=2n∑r=1log(1+rn)
=∫20log(1+x)dx
=[(1+x)log(1+x)−(1+x)]20 [∵∫logx=x(logx−1)]
logA=3log3−2
A=e3log3−2
=e3log3.e−2
=e3log3e2=eloge27e2=27e2