The correct option is
D π2+1limn→∞n∑r=11n√n+rn−r=limn→∞n∑r=11n
⎷1+nr1−nr
Now let x=rn, and hence when n→∞, x=rn→0
Hence,
∫10√1+x1−xdx
Now we have to integrate this-
Let x=sinθ
⟹dx=cosθdθ
And , at x=1,θ=π2 and for x=0,θ=0
Hence, integration becomes,
∫π20√1+sinθ1−sinθcosθdθ
=∫π20√1+sinθ√1−sinθ×√1+sinθ1+sinθcosθdθ
=∫π20√(1+sinθ)21−sin2θcosθdθ
=∫π201+sinθcosθcosθdθ
=∫π20(1+sinθ)dθ
=[θ−cosθ]π20
=[θ]π20−[cosθ]π20
=(π2−0)−(cosπ2−cos0)
=π2+1
Hence, correct answer is option-(D).