Byju's Answer
Standard XII
Mathematics
Second Fundamental Theorem of Calculus
limn→∞12n+22n...
Question
lim
n
→
∞
1
2
n
+
2
2
(
n
−
1
)
+
3
2
(
n
−
2
)
+
.
.
.
.
.
+
n
2
.1
1
3
+
2
3
+
3
3
+
.
.
.
.
+
n
3
is equal to :
A
1
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
1
3
lim
n
→
∞
1
2
n
+
2
2
(
n
−
1
)
+
3
2
(
n
−
2
)
+
⋯
+
n
2
.1
1
3
+
2
3
+
3
3
+
…
⋯
+
n
3
=
lim
n
→
∞
n
∑
r
=
1
(
r
2
)
(
n
−
r
+
1
)
n
∑
r
=
1
r
3
=
lim
n
→
∞
n
2
(
n
+
1
)
(
2
n
+
1
)
6
−
(
n
(
n
+
1
)
2
)
2
+
n
(
n
+
1
)
(
2
n
+
1
)
6
(
n
(
n
+
1
)
2
)
2
=
lim
n
→
∞
(
2
(
2
n
+
1
)
3
(
n
+
1
)
−
1
+
2
(
2
n
+
1
)
3
n
(
n
+
1
)
)
=
4
3
−
1
+
0
=
1
3
Hence, option 'A' is correct.
Suggest Corrections
0
Similar questions
Q.
lim
n
→
∞
1
2
n
+
2
2
(
n
−
1
)
+
3
2
(
n
−
2
)
+
⋯
+
n
2
.1
1
3
+
2
3
+
3
3
+
…
⋯
+
n
3
is equal to
Q.
lim
n
→
∞
2
3
−
1
3
2
3
+
1
3
.
3
3
−
1
3
3
3
+
1
3
.
.
.
.
n
3
−
1
n
3
+
1
equals?
Q.
l
i
m
n
→
∞
2
3
−
1
3
2
3
+
1
3
.
3
3
−
1
3
3
3
+
1
3
.
.
.
.
n
3
−
1
n
3
+
1
equal
Q.
The value of
lim
n
→
∞
(
n
(
n
+
1
)
√
2
n
+
1
+
n
(
n
+
2
)
√
2
(
2
n
+
2
)
+
n
(
n
+
3
)
√
3
(
2
n
+
3
)
.
.
.
.
.
+
1
2
n
√
3
)
is
Q.
Let
S
n
=
1
1
3
+
1
+
2
1
3
+
2
3
+
1
+
2
+
3
1
3
+
2
3
+
3
3
+
.
.
.
.
.
.
+
1
+
2
+
.
.
.
.
.
+
n
1
3
+
2
3
+
.
.
.
.
+
n
3
. If
100
S
n
=
n
, then
n
is equal to :
View More
Related Videos
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Explore more
Second Fundamental Theorem of Calculus
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app