wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limn(12tanx2+122tanx22+123tanx23+......+12ntanx2n) is equal to.

A
1xtanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tanxx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanxxxtanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
xcotx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C tanxxxtanx
tan2x=sin2xcos2x1cot2x=2sinxcosxcos2xsin2x

cot2x=cos2xsin2x2sinxcosx2cot2x=cos2xsinxcosxsin2xsinxcosx

2cot2x=cotxtanxtanx=cotx2cot2x

12tanx2=12cotx2cotx122tanx22=122cotx212cotx

Similarly 12ntanx2n=12ncotx2n12n1cosx2n1

Let S=(12tanx2+122+123tanx23+...+12ntanx2n)

limnS=limn(12cotx2cotx+12ncotx2n12n1)

=limn(cotx+12ncotx2n)=tanxxxtanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon