μ∑n−1r=0n1/2(n+3(r))3/2 n→∞ μ∑n−1r=0n1/2(n3/2+3(r))3/2 n→∞ μ∑n−1r=01n⎛⎜ ⎜⎝11+3rn⎞⎟ ⎟⎠3/2 n→∞ ∫101(1+3x)3/2dx=(−23(1+3x)1/2+c)∫10 =([−23(4)1/2+c−−23]) −1/3+2/3=1/3.