We have,
limθ→π21−sinθ(π2−θ)cosθ(00form)
Applying L’ Hospital rule and we get,
limθ→π20−cosθ(π2−θ)(−sinθ)+cosθ(0−1)
Taking limit and we get,
⇒−cosπ2(π2−π2)(−sinπ2)−cosπ2
⇒0
Hence, this is the answer.
x=sinθ+θcosθ,y=cosθ−θsinθ,then(dydx)θ=π2