wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx04x2x+1+1xtanx.

Open in App
Solution

L=limx04x2x+1+1xtanx
Since the limit is of the indeterminate form (00)
Ln rule can be applied
L=limx04xln42x+1ln2tanx+xsec2x(00)
Again applying LH rule to get :-
L=limx04x(ln4)(ln4)2x+1(ln2)(ln2)sec2x+sec2x+x(2secx)(secxtanx)
L=40(ln4)221(ln2)21+1
L=(ln4)22(ln2)22=(ln4)2ln4.ln22
L=ln42(ln4ln2)
L=ln2(ln2)
L=(ln2)2


1448923_770408_ans_0f20995661e64828bba17d3d25e4ba0f.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon