L=limx→04x−2x+1+1xtanx
Since the limit is of the indeterminate form (→0→0)
Ln rule can be applied
⇒L=limx→04xln4−2x+1ln2tanx+xsec2x(→0→0)
Again applying LH rule to get :-
⇒L=limx→04x(ln4)(ln4)−2x+1(ln2)(ln2)sec2x+sec2x+x(2secx)(secxtanx)
⇒L=40(ln4)2−21(ln2)21+1
L=(ln4)2−2(ln2)22=(ln4)2−ln4.ln22
L=ln42(ln4−ln2)
L=ln2(ln2)
L=(ln2)2