limx→0cos2x−1cosx−1
=limx→0(+2sin2x)−1cosx−1
=limx→0−2sin2xcosx−1
=limx→0−2(1−cos2x)cosx−1
=limx→0−2(1−cos2x)−1(1−cosx)
=limx→02(1−cos2x)1−cosx
=limx→02(1−cosx)(1+cosx)1−cosx
=limx→02(1+cosx)
Putting x=0
=(1+cos0)
=2(1+1)
=2×2
=4.
Hence, the answer is 4.