We have,
limx→0√1+tan−13x−√1−sin−13x√1−sin−12x−√1+tan−12x
⇒√1+tan−13×0−√1−sin−13×0√1−sin−12×0−√1+tan−12×0
⇒√1+tan−10−√1−sin−10√1−sin−10−√1+tan−10
⇒√1+0−√1−0√1−0−√1+0
⇒0
Hence, this is the answer.