limx→0tan−1x−sin−1xsin2xlimx→0tan−1x−tan−1x√1−x2x2(sin3xx3)limx→0tan−1x−tan−1x√1−x2x3limx→0sinxx=1limx→0tan−1⎛⎜
⎜
⎜⎝x−x√1−x21+x.x√1−x2⎞⎟
⎟
⎟⎠x3limx→0tan−1(x√1−x2−xx2+√1−x2)x3(x√1−x2−xx2+√1−x2).x√1−x2−xx2+√1−x2limx→0x(√1−x2−1)x3(x2+√1−x2)limx→0(√1−x2−1)x2(x2+√1−x2)×√1−x2+1√1−x2+1limx→0−x2x2(x2+√1−x2)[1√1−x2+1]=−12
Hence, this is the answer.