wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx0tanxsinxx3.

Open in App
Solution

limx0tanxsinxx3=12
Transform the function in this way:
tanxsinxx3=1x3(sinxcosxsinx)
tanxsinxx3=1x3(sinxsinxcosxcosx)
tanxsinxx3=sinxx31cosxcosx
tanxsinxx3=(sinxx)(1cosxx2)(1cosx)
We can use now the well known trigonometric limit:
limx0sinxx=1
and using the trigonometric identity:
sin2α=1cos2α2
we have,
limx01cosxx2=limx02sin2(x2)x2=12limx0⎜ ⎜ ⎜ ⎜sin(x2)x2⎟ ⎟ ⎟ ⎟2=12
While the third function is continuous so:
limx01cosx=11=1
and we can conclude that:
limx0tanxsinxx3=limx0(sinxx)(1cosxx2)(1cosx)=1×12×1=12
graph tanxsinxx3[1.25,1.25,0.025,1]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon