limx→0tanx−sinxx3=12
Transform the function in this way:
tanx−sinxx3=1x3(sinxcosx−sinx)
tanx−sinxx3=1x3(sinx−sinxcosxcosx)
tanx−sinxx3=sinxx31−cosxcosx
tanx−sinxx3=(sinxx)(1−cosxx2)(1cosx)
We can use now the well known trigonometric limit:
limx→0sinxx=1
and using the trigonometric identity:
sin2α=1−cos2α2
we have,
limx→01−cosxx2=limx→02sin2(x2)x2=12limx→0⎛⎜
⎜
⎜
⎜⎝sin(x2)x2⎞⎟
⎟
⎟
⎟⎠2=12
While the third function is continuous so:
limx→01cosx=11=1
and we can conclude that:
limx→0tanx−sinxx3=limx→0(sinxx)(1−cosxx2)(1cosx)=1×12×1=12
graph tanx−sinxx3[−1.25,1.25,−0.025,1]