limx→0xtan2x−2xtanx(1−cos2x)2
1−cos2x=2sin2x
limx→0x(tan2x−2tanx)(2sin2x)
[⇒tanx=2tanx1−tan2x]
limx→0x(2tanx1−tan2x−2tanx)(2sin2x)2
limx→0x(2tanx−2tanx+2tan3x)(2sin2x)2(1−tan2x)
limx→0x2tan3x(1−tan2x)(4sin2x)
limx→0x2sin2xtan2x(1−tan2x)(1/2sin2x)
divide numerator and denominator by x
limx→012cos3x(1−tan2x)(sinxx)
limx→0sinxx=1,cos(0)=1,tan0=0
Applying limit x→0
limx→012(1)(1−0)1
=1/2