The correct option is C 12
We can write limx→0xtan2x−2xtanx(1−cos2x)2 as
=limx→02xtanx(1−tanx)−2xtanx(2sin2x)2
=limx→02xtan3x(1−tan2x)4sin4x
=limx→0x2sinxcos2xcos2x
=limx→0xsecx2(sinx−sin3x)
Substituting gives indeterminate form.
Applying L'Hospital's Rule,
=limx→02xsec2xtan2x+secx2(cosx−3sin2xcosx)
=0+12(1−0)=12
Hence, option 'C' is correct.