Given limit is L=limx→0(xtan2x−2xtanx)(1−cos2x)2
By expanding tan2x and cos2x we get
(xtan2x−2xtanx)(1−cos2x)2=x2tanx1−(tanx)2−2xtanx(1−(1−2sin2x))2
=2xtanx−[2xtanx−2xtan3x]4sin4x×(1−tan2x)=2xtan3x4sin4x×(1−tan2x)
=2xtan3x4sin4x×(cos2x−sin2xcos2x)=2xsin3xcos3x4sin4x×(cos2x−sin2xcos2x)
=x2sinx×(cos2x−sin2x)cosx
Now applying the limit x→0,we get
L=limx→0x2sinx×limx→01cosx(cos2x−sin2x)=limx→0x2sinx×limx→01cos0(cos20−sin20)=12[∵limx→0xsinx=1]
Hence, option D is correct.