The correct option is B 1elog3
limx→0⎛⎝exlog(3x−1)−(3x−1)xsinxexlogx⎞⎠1x
=limx→0((3x−1)x−(3x−1)xsinxxx)1x
=limx→0[(3x−1x)x(1−sinx)]1x.
=limx→03x−1x(1−sinx)1x.
limx→03x−1x.limx→0(1−sinx)1x(∵limx→0ax−1x=loga)
=log3×elimx→0(1−sinx−1)x
=log3×e−1(∵limx→0sinxx=1)
=log3e.