The correct option is B 6
limx→01−√cos2x⋅3√cos3x⋅4√cos4x⋅⋅⋅n√cosnxx2
L=−limx→0D∏nr=2(cosrx)1/r2x (Using L' Hospital's rule, D is the derivative of the term)
Let y=n∏r=2(cosrx)1/r
⇒lny=n∑r=2(1rln(cosrx))
⇒1ydydx=−n∑r=2tan(rx)
⇒−D=yn∑r=2tan(rx)
⇒Dn∏r=2(cosrx)1/x=−yn∑r=2tan(rx)
⇒L=limx→0y⋅∑nr=2tan(rx)2x
Using limit , limx→0tanxx=1, we get
=12[2+3+4+.....+n]
=12[n(n+1)2−1]
=n2+n−24
⇒n2+n−24=10
⇒n2+n−42=0
⇒(n+7)(n−6)=0
⇒n=6