The correct option is B e2
limx→0e−(1+x)1xx=limx→0e−eln(1+x)x−1x
=limx→0e.eln(1+x)−xx−1x=limx→0−eey−1y.ln(1+x)−xx2
Putting ln(1+x)−xx=y
Now we have limx→0ln(1+x)−xx=limx→011+x−11=0
Also limx→0ln(1+x)−xx2=limx→011+x−12x=limx→0−12(1+x)=−12
Hence the required limit is
=−elimy→0ey−1ylimx→0ln(1+x)−xx2=−e.1.−12=e2