The correct option is D Does not exist
Let f(x)=e1/x−1e1/x+1. Then,
(LHL of f(x) at x = 0)
=limx→0−f(x)=limh→0f(0−h)=limh→0e−1/h−1e−1/h+1
=limh→0⎛⎜
⎜
⎜⎝1e1/h−11e1/h+1⎞⎟
⎟
⎟⎠=−1 [e1/h→∞⇒1e1/h→0]
and,
[RHL of f(x) at x = 0]
=limx→0+f(x)=limh→0f(0+h)=e1/h−1e1/h+1
=limh→0⎛⎜
⎜
⎜⎝1−1e1/h1+e1/h⎞⎟
⎟
⎟⎠ [Dividing Nr and Dr by e1/h]
=1−01+0=1
Clearly, limx→0−f(x)≠limx→0+f(x).
Hence, limx→0 f(x) does not exist.