First take the Right Hand Limit,
R.H.L.=
R.H.L.=limh→0tan2[h][h]2=limh→0tan2[0][0]2=00
which is meaningless
Now take, Left Hand Limit
L.H.L.=limh→0tan2[−h][−h]2=limh→0tan2[−1][−1]2=[tan(1)]21
Substitue value of tan(1)
Thus
LHL=(1.557)2=2.424
As RHL does not exist and LHL is not equal to RHL
The given limit does not exist.