The correct option is
B 12To find : limx→0(16x+9x2)1xApplying exponent rule : ax=elnax=exlna
∴(16x+9x2)1x=e1xln(16x+9x2)
=eln(16x+9x2)x
∴limx→0(16x+9x2)1x=elimx→0⎛⎜
⎜⎝ln(16x+9x2)x⎞⎟
⎟⎠
Consider, L=limx→0(16x+9x2)x
=limx→0(24x+32x2)x which is in the form of 00
So, applying L'Hospital's Rule
ddx(24x+32x2)=12(24x)⋅ln(2)⋅4+32xln(3)⋅2=24x+1⋅ln(2)+32x⋅ln(3)
And ddx(x)=1
∴L=limx→0(24x+1⋅ln(2)+32x⋅ln(3))1=2ln(2)+ln(3)
∴limx→0(16x+9x2)1x=e2ln(2)+ln(3)=eln(2)2+ln(3)=eln(22×3)=22×3=12