wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx4(cosθ)x(sinx)xcos2θx4=

A
cos4θlncosθsin4θlnsinθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cos4θlncosθ+sin4θlnsinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos4θlnsinθsin4θlncosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A cos4θlncosθsin4θlnsinθ
limx4(cosθ)x(sinθ)xcos2θx4
We can write cos2θ=cos2θsin2θ
cos2θ=(cos2θsin2θ)(cos2θ+sin2θ)=cos4θsin4θ
=limy0(cosθ)y+4(sinx)y+4(cos4θsin4θ)y ....[Substituting x4=y and cos2θ=cos4θsin4θ]
=limy0cos4θ[(cosθ)y1y]sin4θ[(sinθ)y1y]
=cos4θlncosθsin4θlnsinθ .......Using formula : limy0ay1y=ln a

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon