Consider the following differential eq.
limx→a√a+2x−√3a√x−√a
Using the L- Hospital rules,
=limx→a12√a+2x×212√x
=limx→a√x2√a+2x
=12√a3a
=12√3
Hence, this is the required answer.
Solve :
(i) 13x−6=52(ii) 2x3−3x8=712(iii) (x+2)(x+3)+(x−3)(x−2)−2x(x+1)=0(iv) 110−7x=35(v) 13(x−4)−3(x−9)−4(x+4)=0(vi) x+7−8x3=17x6−5x8(vii) 3x−24−2x+33=23−x(viii) x+26−(11−x3−14)=3x−412(ix) 25x−53x=115(x) x+23−x+15=x−34−1(xi) 3x−23+2x+32=x+76(xii) x−x−12=1−x−23(xiii) 9x+72−(x−x−27)=36(xiv) 6x+12+1=7x−33
Take away:
(i) 65x2−45x3+56+32x from x33−52x2+35x+14
(ii) 5a22+3a32+a3−65 from 13a3−34a2−52
(iii) 74x3+35x2+12x+92 from 72−x3−x25
(iv) y33+73y2+12y+12 from 13−53y2
(v) 23ac−57ab+23bc from 32ab−74ac−56bc