The correct options are
A f(x)=[x]−x,c=1
D f(x)={x2}−{−x}2,c=0
Option A: f(x) = [[x]] - [2x - 1], at c = 3
Let's check right hand limit at c = 3
x = 3 + h
limh→0f(3+h)=limh→0[[3+h]]−[2(3+h)−1]=4−6=−2
Let's check Left hand limit at c = 3
x = 3 - h
limh→0f(3−h)=limh→0[[3−h]]−[2(3−h)−1]=3−5=−2
limx→3 f(x) does exist.
Option B: f(x) = [x] - x at c = 1
Let's check right hand limit at c = 1
x = 1 + h
limh→0f(1+h)=limh→0[1+h]−(1+h)=1−1=0
Let's check Left hand limit at c = 1
x = 1 - h
limh→0f(1−h)=limh→0[1−h]−(1−h)=0−1=−1
limx→1 f(x) does not exist.
Option C: f(x) = {x2} - {-x}2, at c = 0
Let's check right hand limit at c = 0
x = 0 + h
limh→0f(0+h)=limh→0(h)2−−h2=0−1=−1
Let's check Left hand limit at c = 0
x = 0 - h
limh→0f(0−h)=limh→0(−h)2−h2=0−0=0
limx→0 f(x) does not exist.
Option D: f(x) = tan(sgnx)sgnx,at c = 0
Let's check right hand limit at c = 0
x = 0 + h
limh→0f(0+h)=limh→0tan(sgn(h)))sgn(h)=tan(1)
Let's check Left hand limit at c = 0
x = 0- h
limh→0f(0−h)=limh→0tan(sgn(−h)))sgn(−h)=−tan(1)−1=tan(1)
limx→0 f(x) does exist.
Hence, Option B and C.