The correct option is C 12
limx→π21−sinx−1/31−sinx−2/3is?sinx1/3−1sinx1/3×sinx2/3sinx2/3−1[∵a2−b2=(a+b)(a−b)][sinπ2=1]⇒limx→π2(sinx1/3−1)×sinx1−3(sinx1/3)2−12=sinx1/3(sinx1/3−1)(sinx1/3−1)(sinx1/3+1)limx→π2sinx1/3(sinx1/3+1)=sinx1/3π2sinx1/3π2+1=11+1=12Ans.