Applying limits to limx→π2⎡⎢ ⎢⎣x−π2cosx⎤⎥ ⎥⎦
limx→π2⎡⎢ ⎢⎣x−π2cosx⎤⎥ ⎥⎦=00
It is the indeterminate form, so applying L’Hospitals rule,
limx→π2⎡⎢ ⎢⎣x−π2cosx⎤⎥ ⎥⎦=limx→π2[1−sinx]
=[1−1]
=−1
The value of limx→π/2⎡⎢ ⎢⎣x−π2cosx⎤⎥ ⎥⎦ (where , [x] denotes greatest integer function) is