The correct option is
D nConsider that y=limx→∞(1x+2x+3x+.........+nx)1/x
take natural logarithm on both sides, we have
lny=limx→∞ln[(1x+2x+3x+.........+nx)1/x]
∴lny=limx→∞ln(1x+2x+3x+.........+nx)x
RHS has ∞∞ form. Hence, use L'hospital's rule
∴lny=limx→∞1xln1+2xln2+3xln3+.........+nxlnn1x+2x+3x+.........+nx
On approximating this form, we have
lny=limx→∞nxlnnnx
lny=lnn
∴y=n
Hence, this is required answer.