The correct option is
D −1limx→−∞x4sin(1x)+x21+|x|3=?
Since x→−∞, x is negative. Therefore |x|=−x
limx→−∞x4sin(1x)+x21+|x|3=limx→−∞x4sin(1x)+x21−x3
Divide the numerator and denominator by x3
=limx→−∞xsin(1x)+1x1x3−1
=limx→−∞(xsin(1x)+1x)limx→−∞(1x3−1)
=limx→−∞(xsin(1x))+limx→−∞(1x)limx→−∞(1x3)−limx→−∞(1)
=limx→−∞⎛⎜
⎜
⎜
⎜⎝sin(1x)1x⎞⎟
⎟
⎟
⎟⎠+limx→−∞(1x)limx→−∞(1x3)−limx→−∞(1)
Apply L'hopital's rule to the first term in the numerator.
=limx→−∞⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝−cos(1x)x2−1x2⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠+limx→−∞(1x)limx→−∞(1x3)−limx→−∞(1)
=1+00−1
=1−1
=−1
∴limx→−∞x4sin(1x)+x21+|x|3=−1