1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Limit
lim x→∞∫ 0 x ...
Question
lim
x
→
∞
∫
x
/
2
0
t
2
x
2
(
1
+
t
2
)
d
t
is equal to
A
1
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
N
o
n
e
o
f
t
h
e
s
e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
N
o
n
e
o
f
t
h
e
s
e
lim
x
→
∞
∫
x
/
2
0
t
2
x
2
(
1
+
t
2
)
d
t
=
lim
x
→
∞
1
x
2
∫
x
/
2
0
t
2
1
+
t
2
d
t
=
lim
x
→
∞
1
x
2
[
∫
x
/
2
0
t
2
+
1
−
1
1
+
t
2
d
t
]
=
lim
x
→
∞
1
x
2
[
∫
x
/
2
0
1
+
t
2
1
+
t
2
d
t
−
∫
x
/
2
0
1
1
+
t
2
d
t
]
=
lim
x
→
∞
1
x
2
[
[
t
]
x
/
2
0
−
[
tan
−
1
t
]
x
/
2
0
]
=
lim
x
→
∞
1
x
2
[
x
2
−
tan
−
1
x
2
+
tan
−
1
0
]
=
lim
x
→
∞
1
x
2
[
x
2
−
tan
−
1
x
2
]
=
lim
x
→
∞
[
1
2
x
−
1
x
2
tan
−
1
x
2
]
=
1
∞
−
1
∞
tan
−
1
∞
=
0
−
1
∞
⋅
π
2
=
0
−
0
=
0
.
Suggest Corrections
0
Similar questions
Q.
A continuous function
f
:
R
→
R
satisfy the differential equation
f
(
x
)
=
(
1
+
x
2
)
(
1
+
∫
x
0
f
2
(
t
)
1
+
t
2
d
t
)
then the value of
f
(
−
2
)
is
Q.
l
i
m
x
→
−
1
(
1
+
x
)
(
1
−
x
2
)
(
1
+
x
3
)
(
1
−
x
4
)
.
.
.
.
(
1
−
x
4
n
)
[
(
1
+
x
)
(
1
−
x
2
)
(
1
+
x
3
)
(
1
+
x
4
)
.
.
.
.
.
.
.
(
1
−
x
2
n
)
]
2
is equal to: