The correct option is
D e2limx→∞(x2+x+3x2−x+3)x say f(x)g(x)Divide by x2 inside f(x) for both numerator and denominator.
limx→∞f(x)=limx→∞⎛⎜
⎜
⎜⎝1+1x+3x21−1x+2x2⎞⎟
⎟
⎟⎠
=1+1∞+3∞21−1∞+2∞2=1
limx→∞g(x)=∞
This limit is of the form 1∞ if limx→∞f(x)g(x)=1∞
Then we can rewrite the limit as limx→∞e(f(x)−1)g(x)
⇒elimx→∞⎛⎜⎝x2+x+3x2−x+2−1⎞⎟⎠x
Now divide by x2 inside $
⇒elimx→∞⎛⎜⎝(2x+1)xx2−x+2⎞⎟⎠
Applying limits
⇒elimx→∞⎛⎜
⎜
⎜
⎜
⎜
⎜⎝2+1x1−1x+2x2⎞⎟
⎟
⎟
⎟
⎟
⎟⎠
⇒e2