Consider the given function,
⇒limn→∞(11−n2+21−n2+31−n2+41−n2+.........n1−n2)
⇒limn→∞11−n2(1+2+3+4........n)
⇒limn→∞11−n2n(n+1)2
⇒limn→∞1(1−n)(1+n)n(n+1)2
⇒12limn→∞n(1−n)
Apply L-Hospital rule,
⇒12limn→∞1−1
⇒12×(−1)
⇒−12
Hence, this is the answer.
limn→∞(1n2+2n2+3n2+....+n−1n2)