We have,
limx→π4sinx−cosxπ−4x(00form)
Applying L’ Hospital rule and we get,
limx→π4cosx+sinx0−4
Taking limit and we get,
cosπ4+sinπ4−4
⇒1√2+1√2−4
⇒2√2−4
⇒−24√2
⇒−12√2
Hence, this is the answer.
limx→π4√2−cos x−sin x(4x−π)2
limx→π2√2−sin x−1(π2−x)2