wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

limxπ1sinx2cosx2(cosx4sinx4)

Open in App
Solution

We have, limxπ1sinx2cosx2(cosx4sinx4)
Now, let xπ=t , At xπ, t0
x=π+t

So, limt01sinπ+t2cosπ+t2(cos(π+t4)sin(π+t4))
=limt01cos(t2)sin(t2)(cos(π+t4)sin(π+t4))


Simplifying,
cos(π+t4)sin(π+t4)=cos(π4)cos(t4)sin(π4)sin(t4)sin(π4)cos(t4)cos(π4)sin(t4)=sin(t4)(sinπ4+cosπ4)=2sin(t4)

Now, limt01cos(t2)2sin(t2)sin(t4)=limt02sin2(t4)2sin(t2)sin(t4)(1cos2A=2sin2A)=limt02sin2(t4)(t4)2×(t4)2⎜ ⎜sin(t2)(t2)⎟ ⎟×(t2)×⎜ ⎜ ⎜ ⎜sin(t4)(t4)⎟ ⎟ ⎟ ⎟×(t4)=2×816(limx0sinxx=1)=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon