limx→π2tan2xx−π/2
Let y=x−π2 as x→π2
So y=π2−π2
So y→0
limx→π2tan2xx−π/2
=limy→0⎛⎜
⎜
⎜
⎜⎝tan2(π2+y)y⎞⎟
⎟
⎟
⎟⎠
=limy→0(tan(π+2y)y)
=limy→0(tan2yy)
=limy→0(1y.sin2ycos2y)
=limy→0(sin2yy.1cos2y)
=limy→0sin2yy×limy→01cos2y
Multiply & divided by 2y
=limy→0(sin2yy×2y2y).limy→01cos2y
=limy→0(sin2y2y×2)limy→01cos2y
[∵limx→0sinxx=1]
=2limy→0sin2y2y.limy→01cos2y
=2.1.limy→01cos2y
=21cos2(0)
=2cos0 [∵cos0=1]
=21=2