wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx0axexblog(1+x)+cxexx2sinx=2

A
a=3,b=12,c=9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a=1,b=2,c=4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=2,b=10,c=84
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=3,b=12,c=9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A a=3,b=12,c=9
limx0axexblog(1+x)+cxexx2sinx which is equal to 00. Hence applying L'Hospitals rule

=limx0a[ex+xex]b(1+x)+c[exxex]2xsinx+x2cosx

=ab+c0 Hence for the limit to exist ab+c=0 (1)

Applying L'Hospitals rule again

limx0a[ex+ex+xex]+b(1+x)2+c(ex)(1x)cex2sinx+2xcosx+2xcosxx2sinx

=2a+b2c0 Hence for the limit to exist 2a+b2c=0 (2)

Applying L'Hospitals rule again

limx0aex[x+2]+aex2b(1+x)3+cex(1x)+cex+cex2cosx+4cosx4xsinx2xsinxx2cosx

=3a2b+3c6=2 [From question]

3a2b+3c=12 (3)

ab+c=0 (1)a=bc.

2a+b2c=0 (2)2b2c+b2c=03b=4cb=4c3

3a2b+3c=12 (3)3[bc]2b+3c=12b=12

b=4c3c=12×34=9

a=bc=129=3

a=3,b=12,c=9 [A]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon