The correct option is A 0
limx→∞x(logx)31+x+x2
=limx→∞(logx)3+x.3(logx)2×1x1+2x(Using L'Hospital's rule)
=limx→∞(logx)3+3(logx)21+2x
=limx→∞3(logx)2×1x+6(logx)×1x2{(Using L'Hospital's rule)}
=limx→∞3(logx)2+6logx2x(Using L'Hospital's Rule)
=limx→∞6logx×1x+6x2(Using L'Hospital's rule)
=limx→∞6logx+62x
=limx→∞6(1x)+02(Using L'Hospital's rule)
=0