The correct option is C 0
limx→0sin−1x−tan−1xx2
=limx→01+x2−√1−x22(√1−x2(x(x2+1))) (Applying L'Hospital's rule)
=limx→01+x2−√1−x22(1−x2(x(x2+1)))=12limx→01√1−x2(x2+1)1+x2−√1−x2x=1211limx→01+x2−√1−x2x
=12limx→0(2x+x√1−x2)=0 (Applying L'Hospital's rule)
Hence, option 'C' is correct.