The correct option is
B √π2limx→2√4−x2√cosπx4sin(x−2)=l (say)
⇒l=limx→2√4−x2√cosπx4(x−2)sin(x−2)(x−2) (Dividing numerator and denominator by (x−2))
⇒l=limx→2√4−x2(x−2).√cosπ4xlimx→2sin(x−2)(x−2)[∵limx→af(x)g(x)=limx→af(x)limx→ag(x)]
⇒l=limx→2√(x+2)(2−x)(2−x)2.√cosπ4x1[∵limx→asinxx=1]
⇒l=limx→2√x+22−x.√cosπ4x
⇒l=limx→2
⎷(x+2)(cosπ4x)2−x
⇒l=
⎷limx→2(x)(cosπ4x)+2cosπ4x2−x[∵limx→af(g(x))=f(limx→ag(x))]
⇒l=√2
⎷limx→2cosπ4x2−x
⇒l=√2
⎷limx→2(−sinπ4x)(π4)−1 ( by L-Hospital rule)
⇒l=√2
⎷π2(sinπ4.2)1
⇒l=√π4.(2)(1)
⇒l=√π2 is the correct answer