Converting into exponential form
⇒|x+y|=(100)1/2⇒|x+y|=10⇒x+y=±10 ...(1)
Also given log10y−log10|x|=log1004
⇒log10(y|x|)=log10222 (∵log(mn)=logm−logn))
⇒log10(y|x|)=12log1022 (∵logabm=1blogam)
⇒log10(y|x|)=log102 (∵logxm=mlogx)
⇒y|x|=2
⇒y=2|x| ....(2)
From (1) & (2)
x+2|x|=±10
If x>0 then
3x=±10
x=±103
Since, x>0 . So, x≠−103
∴x=103
⇒y=203
So, the ordered pair is (103,203)
If x<0, then
x−2x=±10
∴x=±10
Since x<0. So, x≠10,
∴x=−10
∴y=20
So, the ordered pair is (-10,20)
Solutions are (−10,20),(103,203)
Hence, 2 ordered pairs are possible.