Here L.H.S.=loge2−12
2loge2−12
and we know that
loge2=11.2+13.4+15.6+... ...(1)
and loge2=1−12.3−14.5−16.7−... ...(2)
the L.H.S. has number 1 and 2loge2 in numerator, then adding (1) and (2), we have
2loge2=1+(11.2−12.3)+(13.4−14.5)+(15.6−16.7)+...
or 2loge2−1=21.2.3+23.4.5+25.6.7+...
Dividing both sides by 2, we get
loge2−12=11.2.3+13.4.5+15.6.7+...∞
Proved.