wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

lim x0cosx2cosx22cosx23......cosx2n is equal to

A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sinxx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
xsinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C sinxx
limx(cosx2cosx22,cosx23.......cosx2x)

sin2θ=2sinθcosθ 2θ=x

=sinx=2(sinx2)cosx2 θ=x2

=2(2sinx4cosx4)cosx2 2θ=x2

θ=x4

=8((sinx8)cosx8cosx4cosx2) x4=2θ

θ=x8

=16(sinx16cosx4cosx8cosx4cosx2)θ=x16

=16(sinx24cosx24cosx23cosx22cosx2)

sinx=(2nsinx2x)cosx2xcosx2x1.......cosx23cosx22cosx2

sinx2xsinx2x⎥ ⎥=cosx2cosx22cosx23.....cosx2x

limxsinx2nsin(x2x)limx0sinxx=1

¯¯¯¯¯¯=0

limxsinx2xsin(x2x)(x2x)×(x2x)=sinxx]limx1sin(x2x)x2x

=sinxx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon