f(x)=3cosx+2sinxsinx+cosx=2+cosxsinx+cosx
(sinx+cosx≠0(i.e.)√2sin(x+π4)≠0⇒x≠nπ−π4)
∴f′(x)=(sinx+cosx)(−sinx)−cosx(cosx−sinx)(sinx+cosx)2
=−1(sinx+cosx)2<0∀xϵR−{nπ−π4}
∴f(x) is decrea\sing if nπ−π4<x<nπ+3π4
However, f(π2)=2,f(π)=3⇒f(π2)<f(π)
(Note : \since f(x) is decrea\sing in its domain π2<π
should imply f(π2)>f(π).
But here f(π2)<f(π). because
between π2andπ,f(x) is not defined at x=3π4