The correct option is D (0,0)
x2(x2+1)(x2+2)=Ax+Bx2+1+Cx+Dx2+2
⇒x2=(Ax+B)(x2+2)+(Cx+D)(x2+1)
Put x=1⇒3A+3B+2C+2D=1
Put x=−1⇒−3A+3B−2C+2D=1
⇒6A+4C=0
⇒A=−23C .....(i)
Put x=2⇒12A+6B+10C+5D=4
Put x=−2⇒−12A+6B−10C+D=
⇒24A+20C=0 .....(ii)
On solving , we get A=0,C=0
Hence, (A,C)=(0,0)